zum Inhalt springen

Karin Dahlman-Wright

"About me.
I am Pro-Vice-Chancellor of Karolinska Institutet (KI) since January 1st 2016 and professor in Molecular Endocrinology. Between February 18th 2016 and July 31st 2017, I held the position as acting Vice-Chancellor. From 2009 to August 2015, I was head of department of Biosciences and Nutrition and 2015 I was vice dean of infrastructure. Between September 2013 and June 2015, I was appointed KI Scientific Director, SciLifeLab, with special responsibility for the national platforms and was part of the SciLifeLab operational management team. In 2001, I founded the BEA core facility which provides advanced services within the area of genomics and bioinformatics. In 1994 and 2000, I held different line and project management positions at Pharmacia and Upjohn. I take part in the KI Strategic Research programme on Diabetes.

      Commission of trust (selected)
I am chairman of KI Holding AB (https://www.kiholding.se/en/about-us/) and the steering group of the AstraZeneca/KI Integrated Cardiometabolic Centre (http://ki.se/en/medh/integrated-cardio-metabolic-centre-icmc). I am a member of the joint steering committee for the AstraZeneca/KI/SciLifeLab collaboration, Swetox (http://swetox.se/en/) and the Center for Innovative Medicine (http://ki.se/en/research/cimed-center-for-innovative-medicine). I am also a member of the reference group for the European spallation resource ESS. I have acted as Chairman, vice Chairman and member of evaluation panels at the Swedish Research Council. I have evaluated research in Norway on request of the Norwegian Research Council. I have taken part in a committee on behalf of the Swedish department of justice with regard to patents in the area of biotechnology and have been appointed expert in patent cases.
Ph.D Medical Sciences, Karolinska Institutet, 1991
Docent Molecular Endocrinology, Karolinska Institutet, 1996
      Research description

My research is focused on studies of estrogen signaling with specific focus on type 2 diabetes and breast cancer. We study phenotypes of mouse models with tissue selective knock-out of estrogen receptors and relate this to molecular changes such as changes in global gene expression. We use different breast cancer cell models and functional genomics technologies, such as ChIP SEQ, global gene expression analysis and proteomics, to identify signaling pathways that can include possible targets for treatment of breast cancer."


Xinnian Dong

Xinnian Dong received her B.S. degree in microbiology from Wuhan University in China in 1982 and Ph.D. degree in molecular biology from Northwestern University in Chicago in 1988. She became interested in using Arabidopsis thaliana as model organism to study plant immune mechanisms when she was a postdoctoral fellow with Dr. Fred Ausubel at Massachusetts General Hospital in Harvard Medical School. Dong became an Assistant Professor at Duke University in 1992 and was promoted to Associate Professor in 1999 and Full Professor in 2004. She is currently an Arts & Sciences Distinguished Professor of Biology. Dong’s laboratory first identified and cloned NPR1, a master immune regulator in plants. Like its mammalian counterpart NF-kB/IkB, nuclear translocation of NPR1 is a major regulatory step. Her lab found that for NPR1, this is controlled by redox-sensitive intermolecular disulfide bonds. S-nitrosylation results in NPR1 oligomerization in the cytosol and reduction by thioredoxin leads to release of NPR1 monomers and their nuclear translocation. The Dong lab also discovered that NPR1 protein turnover by the proteasome is coupled with its transcriptional activity to make immune induction transient. NPR1 degradation is regulated by its paralogs, NPR3 and NPR4, whose role as CUL3 E3 ubiquitin ligase adaptors depends on direct binding to SA. These receptors interact with NPR1 according to the SA gradient generated from the infection site to trigger programmed cell death of infected cells, but promote cell survival in distal cells. Besides the work on NPR1, the Dong lab also identified multiple DNA repair proteins that function in parallel to NPR1 in regulating defense genes and resistance, establishing a molecular link between DNA damage response machinery and plant immunity. Additionally, the Dong lab has made several breakthroughs using transcriptomics. They showed that NPR1 regulates not only transcription of genes encoding antimicrobial proteins, but also their secretion through coordinated induction of ER-resident genes. Recently, in a functional genomic study, the Dong lab made the surprising discovery that plant immune responses are regulated by the circadian clock and the key immune regulator NPR1 is an intrinsic molecular link between the cellular redox rhythm and the circadian clock. This link between the circadian clock and plant immune regulators allows plants to time their immune responses and other metabolic activities to anticipate infection and to avoid fitness cost on growth. For her discoveries, Dong became a HHMI-GMBF investigator and elected as an AAAS fellow in 2011, a member of the National Academy of Sciences in 2012 and an American Academy of Microbiology Fellow in 2013. Dr. Dong, is named one of "The World's Most Influential Scientific Minds 2015" by Thomson Reuters. Read the article here. Download a copy of the pdf here. For more information please visit https://biology.duke.edu/people/xinnian-dong

Sabine Eming

The skin is constantly exposed to environmental stress factors such as injury, microbes, UV light and toxic substances. Therefore, by nature the skin is explicitly well furnished to restore tissue integrity and homeostasis following tissue damage. Cellular and molecular mechanisms that control tissue repair are complex and involve cell-cell and cell-matrix interactions directed by a network of soluble mediators. Furthermore, wound healing mechanisms are not unique to the tissue repair response. In fact, postnatal wound healing in part recapitulates processes in developmental biology and organogenesis. Signals controlling cell growth, migration and differentiation during tissue repair have also emerged as central mediators in cancer biology and other inflammatory disease processes. Professor Eming leads a program of work in tissue damage and repair that encompasses the range from basic structure-function analysis, through in vivo models, to human disease. The group is aiming at a deeper understanding on how the skin senses tissue damage and how these events translate into a regenerative response or disease. Our findings might provide the possibility to manipulate the healing response in order to readjust postnatal repair into regeneration and to develop novel strategies for pharmacological interventions in pathological healing conditions associated with diabetes mellitus, inflammatory diseases or ageing. In addition, we are interested to study parallels between tissue repair, mechanisms of cancer development and inflammatory skin diseases.

Gloria Esposito

Gloria Esposito, Ph.D. (Chief Executive Officer Austrianni GmbH) Dr. Esposito obtained her PhD in Genetics and Molecular Biology at the University of Rome “La Sapienza”. During this period she worked extensively in antibody engineering and on the development of therapeutic antibodies against viral infections. She completed her postdoctoral training in the Laboratory of Klaus Rajewsky in Cologne (Germany), where she subsequently held a position as Investigator. The major focus of her research was on lymphocyte development and antibody maturation. She moved from academia to the Dutch pharmaceutical company Organon, where she lead an in vivo drug target validation group, and then to Taconic, where she established, and for many years led, the Scientific Project Management and Sales Team with global responsibility for the Custom Model Generation portfolio.

Caroline Gutjahr

Caroline Gutjahr is an independent Emmy Noether group leader at the LMU Munich. She studied Biology at the University of Freiburg, Germany and obtained her PhD at the University of Lausanne, Switzerland. She also worked and studied in Scotland, Sri Lanka, Brazil and Italy. During her studies and PhD research she was supported by an elite fellowship of the German National Academic Foundation. With her research group, she investigates plant molecular mechanisms, which regulate and execute the development of arbuscular mycorrhiza symbioses. These symbioses are formed by most land plants with root colonizing arbuscular mycorrhiza fungi, which efficiently take up mineral nutrients from the soil and transport them into the root thereby enhancing plant nutrition. In return, they receive photosynthetically fixed carbon from the plant. Root colonization by arbuscular mycorrhiza fungi involves distinct and genetically separable developmental steps that are largely under plant control. These steps include fascinating subcellular rearrangements of plant cells that precede differentiation of fungal hyphae into particular shapes inside these cells. The two major research lines of the Gutjahr group aim at 1) resolving how these cell rearrangements are regulated and executed and 2) finding molecular interconnections between plant and symbiosis development, including the role of plant hormone signalling pathways. The group recently discovered novel plant genes required for arbuscular mycorrhiza development and currently investigates their function by genetic, biochemical and cell biological methods. The amount and morphology of fungal structures in and outside the root likely determines the symbiotic efficiency. Caroline Gutjahr’s research thus aims at contributing knowledge on how to optimize symbiotic nutrient transfer for application in sustainable agriculture with reduced chemical fertilizer input.
For more information please visit her website at:

Ellen Jorgensen

Dr. Ellen Jorgensen is co-founder of Genspace, a nonprofit community laboratory dedicated to promoting citizen science and access to biotechnology. In 2011 she initiated Genspace’s award-winning curriculum of informal science education for adults, and in 2014 Genspace was named one of the World's Top 10 Innovative Companies in Education by Fast Company magazine. Ellen's efforts to develop Genspace into a haven for entrepreneurship, innovation and citizen science have been chronicled by Nature Medicine, Science, Discover Magazine, Wired, Make, BBC News, The Economist, Forbes, PBS News Hour, The Discovery Channel, and The New York Times.  Ellen has a Ph.D. in Molecular Biology from New York University, spent 30 years in the biotech industry, and is currently faculty at the Cooper Union.  Ellen’s TED talks ‘Biohacking- you can do it, too’ and ‘What You Need To Know About CRISPR’ have received over two million views. Fast Company named her one of the Most Creative Business Leaders of 2017.


Natalia Kononenko

Dr Natalia Kononenko is a junior research group leader at CECAD Cologne, University of Cologne, Germany. Dr. Natalia Kononenko and her co-workers have contributed to the understanding of the molecular and cell biological regulation of autophagosomal trafficking in neurons. The group has identified endocytic adaptor protein complex-2 (AP-2), as a novel adaptor for autophagosomal trafficking in neurons. AP-2 deficient neurons accumulate immobile multi-lamellar autophagosomal structures and reveal severe defects in dendrite maintenance. Natalia Kononenko’s lab integrates molecular, genetic and cell biology approaches with live cell imaging, state-of-the-art superresolution microscopy and in-vivo neuroanatomy techniques (including track-tracing techniques and 3D neuronal reconstructions) to understand the role of membrane trafficking and autophagy in the pathogenesis of age-dependent neurodegenerative diseases.

Leah Krubitzer

Dr Leah Krubitzer heads the Laboratory of Evolutionary Neurobiology in the Center for Neuroscience at the University of California, Davis. Dr. Krubitzer is also a faculty member of the Department of Psychology at UC Davis. She is interested in how complex brains, such as those in humans, are built from simpler forms. Her work examines the anatomical connections and electrophysiological properties of neurons in the neocortex, the portion of the brain responsible for perception, cognition, learning, and memory. Through comparative studies, it is possible to determine which features of the neocortex are shared by all mammals, and how new features have been added during morphological or behavioral specialization. In this way, she can reconstruct the evolution of the neocortex and its relationship to functional changes. Her work accounts for the remarkable diversity in mammalian behavioral and perceptual abilities through the action of a few evolutionarily old developmental mechanisms. While constraining evolutionary change, these mechanisms have also provided the variation needed for such diversification.

Mouna Maroun

Human and animal studies show that post traumatic stress disorder (PTSD) is manifested by a variety of symptoms including exaggerated fear responses following exposure to trauma. PTSD is mainly characterized by impaired ability to extinguish fear responses. Studies in humans and rodents indicate that impairments in extinction is due to abnormalities in the function of the neural circuit of amygdala-prefrontal cortex. The lab for Neurobiology of Emotions  is mainly interested in the role of this circuit in the mediation of acquisition and extinction of fear memories. They employ behavioral, electrophysiological, pharmacological and biochemical tools to study the interaction between the amygdala and the prefrontal cortex in normal conditions and following exposure to stress.
For more information please visit Prof. Maroun's website:http://marounlab.haifa.ac.il/

Madelon Maurice

Madelon Maurice studied Medical Biology at the Free University, Amsterdam and earned her PhD in 1998 at the Department of Rheumatology, LUMC, Leiden, The Netherlands. Through postdoctoral training in the leading laboratories of Hidde Ploegh, Harvard Medical School, Boston, USA, and Hans Clevers, Hubrecht Institute, Utrecht, she gained expertise in a diverse set of disciplines (biochemistry, cell biology, cancer biology, mouse genetics). She now uses this multidisciplinary expertise to address key questions in the fields of stem and cancer cell biology. She was appointed assistant professor at the department of Cell Biology, UMC Utrecht in 2006 and was promoted to associate professor in 2012. Her primary research interests concern the molecular mechanisms by which WNT signals guide stem cell maintenance and tumour cell growth. The innovative nature of her work was awarded by an ERC Starting Grant (2009) and a prestigious VICI grant from the Dutch Research Council (2014). She is the coordinator of the Marie Curie Sklowdowska EU ITN consortium “WntsApp”, comprising 7 academic and 3 private sector European partners (wntsapp.eu) that aim to uncover the molecular basis of WNT receptor signal relay and develop novel peptide-based therapeutics to interfere with Wnt receptor activity.

Elizabeth Murchison

Elizabeth Murchison grew up in Tasmania, the island home of the small, aggressive marsupial known as the Tasmanian devil. In the mid-'90s, the devils were beset with a terrible new disease -- a contagious facial cancer, spread by biting, that killed the animals just as they reached breeding age. By 2008, half the devil population of Australia had contracted the cancer and died. And as Murchison says:"I didn’t want to sit back and let the devils disappear.” Leading an international team at Cold Spring Harbor Laboratory, she worked to understand why this cancer was so virulent -- with the goal of saving the Taz, as it is called, but also of understanding how a contagious cancer works. Analyzing gene and microRNA activity in 25 different facial tumors and in healthy tissue, the team found that cancers from animals across Tasmania were identical, and that the cancer stems from Schwann cells, which normally insulate nerve fibers. Now a Group Leader at the Department of Veterinary Medicine, University of Cambridge, Murchison is using high-throughput DNA sequencing technologies to investigate the genetics and evolution of this disease, one of only three known cancers in mammals that spread contagiously. She says: "This is why cancer is such a difficult disease to treat: It evolves."

S. Katherine Nelson-Coffey

Family, Health; Well-Being Laboratory What leads people to live happy and fulfilling lives? How do major life events, such as having children, alter the course of adults' lives and ultimately shape their well-being? These questions are the central focus of this lab's research program. The Nelson-Coffey lab takes a multi-method approach to understanding how simple behaviors and major life changes influence well-being, including randomized interventions, longitudinal studies, daily diary methodology, and cross-sectional surveys.

Kim Newton

Kim Newton is a Senior Scientist in the Physiological Chemistry department at Genentech.  Her group studies inflammatory signaling mechanisms in disease with a focus on the roles of the kinases RIPK1 and RIPK3.  She obtained BSc and MSc degrees from the University of Auckland, New Zealand followed by a PhD in Medical Biology from the University of Melbourne, Australia.  She moved to California and joined Genentech as a post-doctoral fellow in 2001.



Jane E. Parker

Over the last 20 years, Jane Parker has been a leading researcher in plant-microbe interactions and plant innate immunity. She has made a number of seminal advances to understanding mechanisms of intracellular pathogen recognition, immunity signalling and defence pathway regulation, using the model plant species, Arabidopsis thaliana. While her chief interest remains in unpicking fundamental molecular processes of cell and tissue reprogramming, she has started to explore the genetic structure, behaviour and ecological significance of plant disease resistance genes in natural populations. Parker was elected to The German Academy of Science - Leopoldina in 2013 and as a member of EMBO in 2016. Since 2016 she has been a member of the DFG 'Plant Science' grants committee. For more information please visit http://www.mpipz.mpg.de/parker 

Silke Schwengberg

Silke Schwengberg is a dedicated cell biology professional with more than 20 years of managerial and hands-on expertise in cell technology and the development and integration of cell-based assays. She has worked with stem cells, cell lines, primary cells and organ explants in the fields of pharmacology, in vitro toxicology, and safety within the pharmaceutical and biotech industry as well as in academic research. During her scientific life, she led and supported numerous scientific projects and external collaborations. Her strong managerial and organizational skills also facilitate her work as a CRO study director. Silke Schwengberg enjoys sharing her knowledge with others, e.g. presenting on meetings, teaching, and supporting clients. At CELLS at WORK, she is focused on evaluating, developing and implementing innovative cell-based assays to support drug discovery and safety decision making.